
www.manaraa.com

TRANSLATION OF COMPUTER SCIENCE TEACHING MATERIALS INTO THE

AMERICAN SIGN LANGUAGE FOR DEAF AND HARD OF HEARING STUDENTS

A Thesis

Presented to

The Faculty of the College of Graduate Studies

Lamar University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Prashant Kumawat

May 2011

www.manaraa.com

UMI Number: 1507607

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI 1507607
Copyright 2012 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

www.manaraa.com

TRANSLATION OF COMPUTER SCIENCE TEACHING MATERIALS INTO THE

AMERICAN SIGN LANGUAGE FOR DEAF AND HARD OF HEARING STUDENTS

PRASHANT KUMAWAT

Lawrence J Osborne
Chair, Department of Computer Science

C5L^0
Brenda S Nichols
Dean, College of Arts and Science

Victor A. Zaloor
Interim Dean, College of Graduate Studies

Approved:

c J ^ W ^ ^ L ^ ^ ^
/ Stefan Andrei
Supervising Professor

LawrenceJ. Osborne
immittee Me:

f&^/
ikyoo Koh

mittee Member

www.manaraa.com

© 2011 by Prashant Kumawat

No part of this work can be reproduced without permission except as indicated by the
"Fair Use" clause of the copyright law. Passages, images, or ideas taken from this work
must be properly credited in any written or published materials.

www.manaraa.com

Abstract

TRANSLATION OF COMPUTER SCIENCE TEACHING MATERIALS INTO THE
AMERICAN SIGN LANGUAGE FOR DEAF AND HARD OF HEARING STUDENTS

PRASHANT KUMAWAT

A review of research on deaf students in higher education reveals a significant

body of knowledge about the barriers these students face in gaining access to information

in the classroom. There are many fewer potential solutions for these problems.

Organizations such as 'The Shodor Education Foundation' have developed some signs in

the American Signing Language (ASL) for technical languages, but still there are very

few signs that are related to computer science terminologies. In addition, there is a dearth

of research on the effectiveness of support services as interpreting, note taking, real-time

captioning, and tutoring. There are some software tools developed based on animation of

a signing avatar as a translator that helps students understanding of study material.

However, these tools lack many requirements that are necessary for a student to

understand computer science study material. There is no tool present that has a complete

dictionary to translate computer science terms and many tools read text from file and

directly translate the sentence word by word which is not grammatically correct in ASL.

www.manaraa.com

The prime objective of this research project is to design a computer application that can

read computer science teaching materials and translate them into grammatically correct

ASL. Creation of computer science related terms is the second objective of this project.

The final objective is to create a Graphical User Interface (GUI) that can display English

teaching material and a signing avatar which will sign for each sentence in the teaching

material simultaneously.

www.manaraa.com

Acknowledgement

Foremost, I would like to express my sincere gratitude to my advisor, Dr. Stefan

Andrei, for the continuous support of thesis research, for his patience, motivation,

enthusiasm, immense knowledge and financial support. His guidance helped me in all the

time of research and writing of this thesis. I would also like to thank my chair, Dr.

Lawrence J. Osborne for his guidance and financial support for purchase of various tools

required essentially for the completion of the application. I also want to thank my

committee member, Dr. Hikyoo Koh, for his effort and continuous help throughout this

process.

I would also like to thank the Department of Deaf Studies and Deaf Education for

their significant support for completion of this research. I also want to thank my

colleagues, Prem Tamang, Pratishara Maharjan, and Amit Mahindrakar, for their

continuous helped in the completion of this research work and without their support this

research project would have been incomplete.

Lastly, I want to thank my father, Rameshwar Kumawat, my mother, Santosh

Kumawat, my brother, Vikram Jeet Kumawat and my sister-in-law, Anita Kumawat for

their constant support of my dreams and ideas. I want to thank my family for all of the

sacrifices that they have made on my behalf.

www.manaraa.com

TABLE OF CONTENT

Content Page

List of Tables viii

List of Figures ix

Chapter

Introduction 1

1.1 Background 1

1.2 Motivation 2

1.3 Problem Domain 3

1.4 A Sample Approach for Conversion 5

1.5 Scope and Limitation 6

1.6 Structure of Subsequent Chapters 6

Methodology 8

2.1 Requirement Specification 8

2.2 English Sentence Structure 9

2.2.1 Part-of-Speech Tagging and Type Dependencies 9

2.2.2 Treebank 11

2.3 ASL Grammar 15

v

www.manaraa.com

2.4 Algorithm 19

2.4.1 Process Flow 19

2.4.2 Algorithm: ASL Translation 20

2.4.3 Algorithm: Preorder Traversal 21

2.4.4 Algorithm: Signing Avatar Generation 21

Parsing 23

3.1 System Requirement 23

3.1.1 Tools and Libraries Used 23

3.2 Input 25

3.3 Parsing of English Sentence 26

3.3.1 Parsing and Categorical Distribution 26

3.3.2 Semantic Parse Tree 30

3.3.3 Type Dependency List 33

Conversion 34

4.1 Required Tools 34

4.2 ASL Grammar 35

4.3 Implementation of ASL Rules 36

4.4 Non-Manual Markers 40

4.5 Gesture Creation 40

4.5.1 Sources for Signing Gesture 41

vi

www.manaraa.com

4.5.2 Gesture Creation Technique 42

Presentation 43

5.1 Related Tools and Libraries 43

5.1.1 Java Media Framework(JMF) 43

5.1.2 AutoItv3 43

5.1.3 VCom3D SignSmith Studio 44

5.2 Automated Signing Movie Creation 44

5.3 Output Generation 45

5.3.1 Autolt v3 Script 45

5.3.2 SignSmith Studio 46

5.3.3 Animation and PowerPoint Slides Display 46

Results 49

Conclusion and Future Work 50

7.1 Conclusion 50

7.2 Future Work 50

References 52

Appendix A Penn Treebank POS Tags 55

Appendix B List of Translated Words 58

Appendix C Autolt Script 60

vii

www.manaraa.com

List of Tables

Table 2.1 Word Level POS Tags 13

Table 3.1 Method Description of Java Class com.Aspose.Slides 25

Table 3.4 Method Description of Class nlp.parser.lesparser.LexicalizedParser 28

Table 3.4 Method Description of Class nlp.trees.PennTreebankLanguagePack 29

Table 3.5 Method Description of Class edu.stanford.edu.tree.TreePrint 29

Table 3.6 Method Description of Class EnglishParser 30

Table 3.6 Method Description of Class SemanticParseTree 31

Table 3.7 Method Description of Class TypeDependency 33

Table 4.1 Method Description of ASLGrammar Class 35

Table 5.1: Method Description of JavaRunCommand Class 45

Table 5.2: Method Description of MediaPlayer Class 46

Table 5.3: Method Description of Class AsposePowerPointReader 47

vm

www.manaraa.com

List of Figures

Figure 2.1 The Bracketed Tree Representation of Sentence with POS Tags 12

Figure 2.2 The Hierarchical Tree Representation of Sentence with POS Tags 12

Figure 2.3 The Design View of the Software Project 19

Figure 4.1: Addition of New Gestures to ASL Dictionary 41

Figure 4.2: Conversion of Signs Using Gesture Builder 42

Figure 5.1: GUI to Display Slides and Signing Avatar 48

IX

www.manaraa.com

Kumawat 1

Chapter 1

Introduction

1.1 Background

American Sign Language (ASL), for a time also called Ameslan, is a dominant

sign language for deaf Americans, including deaf communities in the United States, in

English-speaking parts of Canada, and in some regions of Mexico (Wikipedia 2011).

ASL is a natural language and contains phonology, morphology, semantics, syntax, and

pragmatics just like a spoken language (Valli and Lucas 2002). The grammatical

structure of ASL is completely different from English. Information is encoded not in

sound but with the shape and movement of hands and other parts of body and with facial

expressions (Baker-Shenk and Cokley 2002). Learning ASL is the same as learning any

other foreign language and should not be expected to have the same grammar rules as

English. It is a common misconception that ASL is merely the finger spelling of English

words. Using the manual alphabet to spell out entire words letter by letter is occasionally

incorporated in ASL (Stewart, Stewart and Little 2007). ASL is continuously growing

and adding new signs to keep up with new technologies. For example, there is a sign for

'Internet' (the L hands, touching at thumb tips, rotate up from palm down to palm

forward) (Fourm 2009). One of the basic problems which the deaf and hard of hearing

community faces is not getting enough exposure to science and engineering subjects

(Marschark and Hauser 2008). For a deaf/hard of hearing student, to be a science or

www.manaraa.com

Kumawat 2

engineering major, it is required that faculties be fully trained to deliver their lectures in

ASL or a translator is needed that can sign the lecture simultaneously with the faculty.

1.2 Motivation

Computers increasingly are prevalent in the classroom. Even with student laptops

becoming the norm, some beneficial usage of this widespread technology is being

overlooked. Speech recognition applications are maturing for deaf and hard of hearing

students and possess the potential to provide real-time notes. This dependence on English

captioning however does not ensure equal access, as the average deaf or hard of hearing

high school graduates read below the fourth grade level (Lang 2002). Lectures delivered

in universities and colleges and study materials are provided primarily in English. Since

English is not the first language for deaf and hard of hearing students, it makes it very

difficult for students to understand the subject (Sheryl 1997). A lot of terminologies in

computer science and English are common but have a specific meaning when they are

discussed in the computer science stream. For example, "long" in English would just

mean lengthy or is extended in time or dimension, whereas in computer science it is a

JAVA primitive type that is used to declare integers that are greater than the maximum

value of integer declared by "int" primitive type. Few online and video databases are

present. One is the Shodor Education Foundation (T. S. Education Foundation 2005)

funded with support from National Science Foundation in 2005 has compiled various

STEM (abbreviation for Science, Technology, Engineering and Mathematics) terms but

highly specific signs for computer science stream are not present. To make computer

www.manaraa.com

Kumawat 3

science courses available to deaf and hard of hearing students, it is imperative for

students to learn all the signs related to computer science terminologies (Robbins 1996).

There are around 500 additional signs that are not currently present in either paper or

online dictionaries. These factors cumulatively discourage deaf and hard of hearing

students to take computer science as their major.

In order to attract deaf and hard of hearing students to computer science subjects

there is a need to automate the process of translating lectures to ASL. With the help of the

department of deaf studies and deaf education and other signing repositories this project

intends to develop an extension of computer science American Sign Language Dictionary

(ASLD), an online repository for computer science specific terminologies in ASL. This

project also intends to develop a computer application that reads teaching materials,

translates the English lectures into ASL, and displays the signs by using a signing avatar

animation.

1.3 Problem Domain

With the radical changes in technology, software developers are trying to reduce

the need for teachers to learn ASL or a translator for lectures (H|Anim 2000). Software

developers around the world have built many applications that use a humanoid which can

understand a written and spoken language and translate it to signing language by creating

gestures using animation. For instance, "Sign Smith" from Vcom3D (VCom3D 2006)

with VCommunicator Gesture Builder (VCom3D 2006), "SiSi(Say itjSign it)" from IBM

(IBM's Extreme Blue Projects 2007), "SiGML" from eSign (eSign Project 2004) and

www.manaraa.com

Kumawat 4

"TESSA" from Visicast (ViSiCAST 2000) are popular commercially used tools and all of

these tools use a Signing Avatar, a computer modeled representation of a human being, to

perform sign language gesture (H|Anim 2000). These tools use a text file or voice as

input. However, none of these tools support the Microsoft Power Point slide or Microsoft

Word as input files, which are often used by the teachers for teaching purposes. This

project represents an effort to overcome some of the difficulties that come across

converting teaching material into ASL.

The project proposes a software application which will eliminate the need of

having a translator in teaching a computer science course. It will assist teaching of

courses to deaf and hard of hearing students by translating the lectures from English to

ASL. The project focuses on introducing computer science course related ASL signs,

translation of English text contained in teaching materials to ASL text, and presenting an

avatar to perform the Sign Language gestures corresponding to the translated text. With

the cooperation of the Department of Deaf Studies and Deaf Education, signs for

computer science specific terms will be created. This project also attempts to translate

English into ASL using correct grammar rules by identifying correct grammatical

structure of English sentences by using Stanford Natural Language Parser (The Stanford

Natural Language Processing Group 2006). This project presents a much more elaborated

algorithm for conversion of English grammar to ASL grammar. It also provides a

graphical user interface that can display the teaching material, the ASL text and the

signing avatar on one screen.

www.manaraa.com

Kumawat 5

1.4 A Sample Approach for Conversion

English and ASL have completely different grammatical structures and rules of

forming sentences. To convert a sentence from English to ASL different rules may be

applied on the sentence depending upon the type of sentence (Stewart, Stewart and Little

2007). To develop an understanding of the relation between English and ASL, here is an

example of a conversion of a computer science related sentence into an ASL sentence.

English sentence: What is size of integer array if size of integer is four?

For the above mentioned example the resultant tool must be able to apply

following rules to the sentence:

• Eliminate Be-Verbs.

• Decide category of sentence.

• The above example is an information seeking question which has a topic

and comment format.

• Wh-adverb is removed and added to the end of the sentence.

• Topic of sentence is placed at the beginning of the new ASL sentence.

American Sign Language sentence: size of integer is four, size of integer array,

what?

Once a sentence is converted from English to ASL, a signing avatar can sign the

sentence word by word such that the resultant animation delivers a meaningful sentence

which is grammatically correct in ASL.

www.manaraa.com

Kumawat 6

1.5 Scope and Limitation

Many professional tools are available in the market that can convert English to

ASL, but there are no tools available for translating computer science related terminology

to ASL. This application makes an effort to translate lectures of computer science courses

into ASL. The gesture built for computer science related terms are validated by the Deaf

Studies and Deaf Education Department. Some of the gestures are taken from the video

tutorials provided by Rochester Institute of technology (Rochester Institute of

Technology 2011). This software will attract deaf and hard of hearing graduate students

for whom English is not the first language, and are interested in taking computer science

as their major. The video tutorial also provides signs for science and mathematical fields.

This software can be scaled to convert mathematical subjects as well.

Since this software uses a third party tool for the animation and signing, not all

the features are available for the programmer. Changing facial expression according to

the demand of the sentence is a very important part of ASL which is not provided with

this application. Using third party tool also makes the process of translation much slower.

1.6 Structure of Subsequent Chapters

This report contains 6 more chapters. The chapter titles and a summary of each chapter

are as follows:

Chapter 2: Methodology

www.manaraa.com

Kumawat 7

This chapter provides the details about the technique used for the conversion of

English to ASL.

Chapter 3: Parsing

This chapter discusses the details about the implementation of the parsing method

of English sentences and also focuses on the data structures used to store parsed

sentences.

Chapter 4: Conversion

This chapter provides the details about the rules used to convert English grammar

to ASL grammar.

Chapter 5: Presentation

This chapter discusses the implementation of the front-end of the application

created.

Chapter 6: Results

This chapter discusses the results that are gained after the end of the research.

Chapter 7: Conclusion and Future Work

This chapter provides the conclusion of the research and the potential future work

in this field of study.

www.manaraa.com

Kumawat 8

Chapter 2

Methodology

This chapter is mainly concerned with the analysis and design of the application

prior to its implementation. It explains the requirement specification of the application

and how the proposed application is going to provide a feasible solution for the problem

domain. We will also discuss the categorical distribution of the words and the

grammatical relationship between words for sentences in the English language which

would provide us an understanding of relationships between the English sentence and the

equivalent ASL sentence. This chapter also discusses the data structure used to represent

an English sentence. Grammatical rules of formation of sentences in ASL are discussed

to deliver a clear understanding of the relationship between ASL and English. We will

then discuss various algorithms that will be used in the implementation of this project to

convert English to ASL.

2.1 Requirement Specification

This project is intended to design an application that is able to read computer

science teaching materials and convert them to American Signing Language which is

comprehensible to deaf and hard of hearing students, and should be able to communicate

to students visually by signing the text. The application should be able to read Microsoft®

PowerPoint (used widely across the globe for delivering presentations) lecture notes into

www.manaraa.com

Kumawat 9

English sentences. The English sentences must be then converted to ASL by applying the

proper ASL grammar rules. The application must also have a graphic engine for a signing

avatar and an American Sign Language Dictionary (ASLD) for the graphic engine. The

graphic engine of application must be able to read the ASL text and should make use of

the ASL dictionary to create signing gestures for English sentences in lecture notes. The

application must be able to display a signing avatar with the PowerPoint presentation to

make the text and the visual language available at the same time. New gestures related to

computer science terminologies must be created which deliver a clear meaning of the

words, as intended, to the deaf and hard of hearing students.

2.2 English Sentence Structure

2.2.1 Part-of-Speech Tagging and Type Dependencies

To translate an English sentence into an equivalent sentence with a different

grammatical structure, we should first understand how a sentence in the English language

can be decomposed into words that can fit into different categories, and then the words

can be picked up to form a sentence with a different syntactical structure. The Part-of-

Speech tagging (POS tagging or POST), also called grammatical or word category

disambiguation, is the process of marking up the words in a text as corresponding to a

particular part of speech, based on both its definition, as well as its context, i.e.,

relationship with adjacent and related words in a phrase, sentence, or paragraph . English

words have been traditionally classified into eight lexical categories or parts of speech

www.manaraa.com

Kumawat 10

(and are still done so in most dictionaries) (The Stanford Natural Language Processing

Group 2006):

• Noun: any abstract or concrete entity.

• Pronoun: any substitute of a noun or noun phrase.

• Adjective: any qualifier of a noun.

• Verb: any action or state of being.

• Adverb: any qualifier of an adjective, verb or other adverb.

• Preposition: any establisher of relation and syntactic context.

• Conjunction: any syntactic connector.

• Interjection: any emotional greeting.

For example, the sentence "Today is a wonderful day" can be represented as

having the following parts of speech.

Today/NNP is/VBZ a/DT wonderful/JJ day/NN ./.

NNP: Proper noun, singular

VBZ: Verb, 3rd person singular present

DT: Determiner

JJ: Adjective

NN: Noun, singular or mass

. : Sentence-final punctuation

Apart from the categorical distribution, we also need to know the relationship

between the words. The type dependency represents the binary grammatical relationship

www.manaraa.com

Kumawat 11

between two words in sentences. This application uses the Stanford type dependencies

which contain 55 grammatical relationships (Mameffe and Manning 2010). For the above

example, "Today is a wonderful day" the type dependencies are shown below.

nsubj(day-5, Today-1)

cop(day-5, is-2)

det(day-5, a-3)

amod(day-5, wonderful-4)

nsubj: Nominal Subject

cop: Copula

det: Determiner

amod: Adjectival Modifier

2.2.2 Treebank

Once the categories of words in the English language are decided, the next task

would be to represent a sentence with its POS tags in a data structure. A Treebank, or

parsed corpus, is a text corpus in which each sentence can be parsed, i.e., annotated with

syntactic structure. The syntactic structure is commonly represented as a tree structure,

hence, the name Treebank. Some treebanks follow a specific linguistic theory in syntactic

annotation but more try to be less theory-specific (The Stanford Natural Language

Processing Group 2006). However, two main groups can be distinguished: the treebanks

that annotate phrase structure and those that annotate dependency structure (Pettibone

2002). It is important to clarify the difference between the formal representation and the

www.manaraa.com

Kumawat 12

data structure used. Treebank are necessarily constructed according to a particular

grammar. The same grammar may be implemented by using different data structure (The

Stanford Natural Language Processing Group 2006). For example, the syntactic analysis

of "Today is a wonderful day" is shown in Figure 2.2, but can be represented by simple

labeled brackets in a text file as shown in Figure 2.1.

(R O O T

<S

(N P

(V P

c

CMNP

(V B Z

CMP

->»

T o d » y »

i s }

0 3 T a>

(N N «tay>»

Figure 2.1 The Bracketed Tree Representation of Sentence with POS Tags.

T
N N « V B Z

i i
Today i s

_̂ ~-—- "~"~

D T

I
X

«

^J-

?ROC3T

S

"""̂ -̂̂ ^̂
V P

wcxidexiul

— -

N N

2
day

-^ -

I

!

1 -

Figure 2.2 The Hierarchical Tree Representation of Sentence with POS Tags.

www.manaraa.com

Kumawat 13

Listed below are the standard tags used in Perm Treebank. Each tag has its

description associated with it (Marcus, Marcinkiewicz and Santorini 1993).

Table 2.1 Word Level POS Tags

Tag

CC

CD

DT

EX

FW

IN

JJ

JJR

JJS

LS

MD

NN

NNS

NNP

NNPS

PDT

Description

Coordinating conjunction

Cardinal Number

Determiner

Existential there

Foreign word

Preposition or subordinating conjunction

Adjective

Adjective, comparative

Adjective, superlative

List item marker

Modal

Noun, singular or mass

Noun, plural

Proper noun, singular

Proper noun, plural

Predeterminer

www.manaraa.com

Kumawat 14

POS

PRP

PRP$

RB

RBR

RBS

RP

SYM

TO

UH

VB

VBD

VBG

VBN

VBP

VBZ

WDT

WP

WP$

WRB

Possessive ending

Personal pronoun

Possessive pronoun

Adverb

Adverb, comparative

Adverb, superlative

Particle

Symbol

To

Interjection

Verb, base form

Verb, past tense

Verb, gerund or present participle

Verb, Past participle

Verb, non-3rd person singular present

Verb, 3rd person singular present

Wh-determiner

Wh-pronoun

Possessive wh-pronoun

Wh-adverb

www.manaraa.com

Kumawat 15

2.3 ASL Grammar

Grammar is a set of rules for describing a language. These rules guide users in

correct speaking or signing of a language. These rules are defined by the group of people

who use the language. Just like any other spoken,and written language, ASL grammar

also have its own rules for phonology, morphology, syntax, and pragmatics (Valli and

Lucas 2002). To make the signing by the avatar realistic to the deaf and hard of hearing

students, the English sentences must be modified such that the resulting sentence should

follow ASL grammar rules. There are fourteen grammar rules for ASL as listed below

which are implemented by this application (Stewart, Stewart and Little 2007).

a. Topic/Comment: In a topic/comment sentence, the topic is described first

followed by the comment.

E.g.: "He won $3,000,000 and he is happy" will be translated to "He won 3

million dollars, he happy". In this example "He won 3 million dollars" is the topic

and "he happy" is the comment.

The basic idea which governs this rule is there must be a topic before there can be

a comment about the topic.

b. Tense with time adverbs: The time adverb is placed at the beginning or near the

beginning of a sentence.

A. ASL: Last night, sunset beautiful. (English: The sunset was beautiful last

night.)

B. ASL: In-2-days, you go work. (English: You go to work in two days.)

C. ASL: Me yesterday, stay home. (English: I stayed home yesterday.)

www.manaraa.com

Kumawat 16

Placing a time adverb at the beginning of a sentence marks the tense of the

sentence. Using the time adverb is the most common means of indicating tense.

Unlike English, verb signs never undergo changes to indicate tense. Because there

are no changes to a verb sign, the time that an action occurred must come before

the verb sign.

c. Simple yes/no questions: In short sentence that ask a yes/no question, the order of

sign is variable.

A. ASL: You exercise want?

B. ASL: You want exercise?

C. ASL: Want exercise you?

D. ASL: Exercise you want?

In short, questions such as those in sentences a-d, the signer is asking simple

yes/no question, and the correct English translation for all of them is "Do you

want to exercise?"

d. Long yes/no questions: Long yes/no questions use the topic/question format. In a

longer yes/no question, the first describes the topic and then places the sign that is

asking the question at or near the end of sentence.

E.g.: "Is that black cat climbing the tree yours?" can be translated as "Cat black

tree climb, your?" in ASL.

From the above example, we infer that first the topic is signed and then the

question is asked.

www.manaraa.com

Kumawat 17

e. Information seeking questions: Simple questions that ask for information have

variable sentence structure and rely on non-manual signals to distinguish them

from declarative sentences.

E.g.: "How long has she worked here?" will be translated to "She works here,

how long?" and "Why did the city destroy the building?" will be translated to

"City destroy building, why?"

In these sentences, the "WH" question sign or phrase comes at the end of

question. It follows a topic/question format because a topic is described followed

by a question about it.

f. Pronominalization: Pronouns are indicated by pointing to either (a) a person or

thing that is present or (b) a place in the signing space that is used as a reference

point for a person or a thing. Pointing is mostly done with the index finger. If the

person or object is present, then the signer merely points to them and the pointing

becomes the pronoun. In the absence of a person or object the singer use the

signing space to insert reference point that will represent a specific person or

object.

g. Rhetorical questions: In a rhetorical question, the signer asks a question and then

answers it. There is no expectation that someone else will answer the question.

Rhetorical questions often make use of sign for "WH" questions such as WHY

and HOW. When 'why' is used, the proper translation will often include the

conjunction "because."

h. Ordering of simple sentence: In simple sentence the verb can be placed before or

after the object of the sentence.

www.manaraa.com

Kumawat 18

E.g.: "Me play game." Or Me game play" are both translation of the English

sentence "I play a game."

Conditional sentence: In a conditional sentence, first the condition is described

then the outcome of this condition is described. The condition can be clearly

marked by use of sign SUPPOSE.

E.g.: "I will have to leave if she sees me" will be translated to "Suppose she see

me, me have to leave."

The fingerspelling of I-F is also used to construct a conditional clause. I-F can be

used interchangeably with the sign SUPPOSE. I-F is often used to give greater

emphasis to a condition.

Negation: You can negate a thought by placing negative sign before the verb or

by first describing a topic and then signing the appropriate negative sign or giving

a negative head shake.

E.g.: "I'm not watching the football game." can be translated to the ASL as "Me

not watch football game." In this sentence, the thought is negated by placing a

negative sign before the verb. The sign NOT negates the sign WATCH.

Be-verb Elimination: Be-verbs must be eliminated from the sentence.

am, is, are, was, were, been, being, be are some examples of Be-verbs.

E.g.: "ASL is a good language" will be signed as "language good, ASL"

Removing Articles: Articles such as 'a', 'an' and 'the' are removed from the

sentence. In the above example, 'a' is removed from the sentence.

Shifting Adjectives: In ASL adjectives are placed after their corresponding noun.

In the above example, 'good' is placed after 'language'.

www.manaraa.com

Kumawat 19

n. Object-Subject-Verb: For lengthy sentences, in ASL, the verb must be placed

after the subject and the object.

2.4 Algorithm

This operation is used to build the Semantic Parse Tree from the POS Tags. Each

tag forms the nodes of the Semantic Parse Tree. This operation is useful to add new

nodes and representing new words to make the context clear in ASL.

2.4.1 Process Flow

The conversion of English to ASL and the creation of the Signing Avatar are

complicated procedures which involve several tools and algorithms. This process is

divided into the following steps:

OCR

I
English Sentence

T
Stanford Parser

1
Semantic Parse Tree

English to ASL

Translator

ASL Sentence

*
Graphic Engine

ASL Dictionary

ASL Grammar

Rules

M Signing Avatar

Figure 2.3 The Design View of the Software Project

www.manaraa.com

Kumawat 20

2.4.2 Algorithm: ASL Translation

The input: An arbitrary English sentence

The output: The Equivalent Translated ASL Sentence

Procedure ASLTranslation (input: English_Sentence)

Begin:

i) Parse the English sentence using the Stanford Parser which gives the POS

Tagset, Syntactic Tagset and Type Dependency as output,

ii) Build the Type Dependency List (TDL) from the given sets of the Type

Dependencies,

iii) Generate the Semantic Parse Tree from the given set of POS and the

Syntactic Tagset using Addition Operation,

iv) Sort the grammatical rules of ASL based on their priorities stored in the

List. Each grammatical rule has its priority set based on its importance,

v) For each rules R in the list Grammatical Rule List (GRL),

a) Check if the rule applies to the sentence.

b) Fetch the type dependency (TD), associated with the R.

c) Based on the Rule R,

Either Perform Rotation ()

Or Perform Addition ()

Or Perform Deletion ()

d) Add the Non-manual Markers to the nodes in the Tree.

www.manaraa.com

Kumawat 21

vi) Perform the Preorder Traversal of the final modified SPT. The ASL text is

generated by concatenating all the strings at the leaf nodes of the Semantic

Parse Tree.

End

2.4.3 Algorithm: Preorder Traversal

The following recursive algorithm is used to traverse the Semantic Parse Tree in

preorder manner, i.e., visiting each root node first and then its child nodes from left to

right.

Procedure preorder (input: SPT)

Begin:

If SPT == null then return;

visit (SPT); - visit/process the root

For (each child with index i of the node SPT)

preorder (SPT —> child[i]); - traverse the child in the given List

- from left to right

Endfor

End

2.4.4 Algorithm: Signing Avatar Generation

The following algorithm is the main algorithm of this project that generates the

Signing Avatar animation videos from the English Sentences contained in Power Point

slides.

www.manaraa.com

Kumawat 22

The input: PowerPoint Slide containing English Sentence

The output: Signing Avatar animation videos

Procedure ASLTranslation (input: PowerPointSlide)

Begin:

SlideList <- Get all the slides from PowerPoint using

Aspose.slides.getSlides()

For each slide with index i in SlideList

SentenceList 4- Get all the sentences in slide the

SlideList[i] using Aspose.slides.getText();

For each sentence with index j in SentenceList

ASLText = ASLTranslation (SentenceList[j]);

Invoke Autolt using JavaRunCommand;

Generate Signing Avatar from ASLText;

Export the SigningAvatar animation video to the folder;

EndFor

Endfor

End

www.manaraa.com

Kumawat 23

Chapter 3

Parsing

This chapter basically deals with the detailed implementation method of getting

text from the input source of the application and then parsing it into words that will fit a

particular category. This chapter also discusses the data structure used to store the text

and also the list of grammatical relationships between different words in a sentence.

Different representation techniques are discussed for the hierarchal representation of the

word tree. There are different types of tools and libraries that are used for completion of

this application. This chapter only covers tools that are used for parsing of sentences.

Other tools and libraries which are used are covered in subsequent chapters.

3.1 System Requirement

This section covers the tools and libraries required by the application used to

parse an English sentence into a tree structure.

3.1.1 Tools and Libraries Used

The following tools and libraries are used in this application:

a. Aspose.Slides and Aspose.Words

www.manaraa.com

Kumawat 24

The commercial tools Aspose.Slides® (Aspose 2011) and Aspose.Words®

(Aspose 2011) from the Aspose company are used to interact with the Microsoft®

Power Point slides and Microsoft® Word documents. Aspose.Slides provide the

interface in the Java to manage texts, shapes, tables, animations, adding audio and

video to slides, previewing slides, exporting slides to PDF format, etc. Similarly,

Aspose. Words is a class library in Java that performs a great range of document

processing tasks and supports DOC, RTF, HTML, Open Document, PDF, and

other formats. This project uses these libraries to extract the English text from

given lectures in Microsoft Word and Power Point and displays it on the GUI of

the software.

b. The Stanford Natural Language Parser

Stanford English Parse is a natural language parser that works out the

grammatical structure of English sentences, for instance, which groups of words

go together (as "phrases") and which words are the subject or the object of a verb.

The parser is a Java implementation of a probabilistic PCFG and dependency

parser for English, German, Chinese, and Arabic. The Stanford dependencies

provide a representation of grammatical relations between words in a sentence.

They have been designed to be easily understood and effectively used by people

who want to extract textual relations. It uses knowledge of language gained from

hand-parsed sentences to try to produce the most likely analysis of new sentences

(The Stanford Natural Language Processing Group 2006).

www.manaraa.com

Kumawat 25

3.2 Input

As per the requirement of the application, it must be able to read English text

from teaching materials. The most commonly used application to deliver lectures is

Microsoft PowerPoint. The Aspose.Slides library is used to retrieve the text from

PowerPoint slides. Apart from retrieval of text application, it must also be able to gather

the properties of text. The property of text must be preserved at the time of output

generation as the output must resemble the input PowerPoint file. The Aspose Slides

provide a class interface which can be used by other Java classes to get the text and the

properties of the text. The Aspose Slides provide com.Aspose.Slides (Aspose 2011) class

package with methods listed below in the table.

com.Aspose.Slides: This class is used to read the content from the Microsoft

PowerPoint slides. This class provides the following package.

Table 3.1 Method Description of Java Class com.Aspose.Slides

getSlides ()

eetSlideBvIddone id)

getSlideBvPositionfint position)

getSlideCommentsf)

getShapesO

getTextFrameO

Returns the list of all slides in a PowerPoint

presentation.

Returns the slide by Id.

Returns the slide by Slide Position.

Returns the collection of slide comments.

Returns the shapes of a slide.

Returns the TextFrame object for a Shape.

www.manaraa.com

Kumawat 26

getParagraphsO

getTextO

getFontColorO

getFontHeightO

getFontlndexO

isFontBoldO

Returns the list of all paragraphs in a frame.

Returns the plain text of a portion.

Returns the color of a portion.

Returns the font height of a portion.

Returns the index of the used font in a Fonts

collection.

Determines whether the font is bold.

3.3 Parsing of English Sentence

This section explains the processing of an English sentence before it is

converted to ASL using the grammar rules. It constitutes of the following subsections:

• Parsing and Categorical Distribution

• Semantic Parse Tree

• Type Dependency List

3.3.1 Parsing and Categorical Distribution

Once the sentence is retrieved from the PowerPoint slides, the next task is to

separate all the words from the sentence and classify them into lexical categories. For this

task we need a Natural Language Parser (NLP). This application uses the Stanford

Natural Language Parser (The Stanford Natural Language Processing Group 2006) to

www.manaraa.com

Kumawat 27

parse words from a given sentences and classify them to appropriate POS tagset and

syntactic tagset to represent the grammatical structure of the given sentence. The

Stanford parser uses the Penn Treebank POS tagset for the representation of part of

speech information and symbols of the English words. The Penn Treebank has 36 word

level POS tags and 12 punctuation and currency level tags (Pettibone 2002). All the word

level and punctuation tags are directly associated with each word. There are 21 phrase

levels and 5 clause level tags that are parent tags for a phrase and clause, respectively

(The Stanford Natural Language Processing Group 2006). A pictorial view of tagset

hierarchy is explained in more detail in Semantic Parse Tree subsection. The Stanford

parser also lists the Type Dependencies for a given sentence. The current representation

of the Type Dependencies contains 52 grammatical relationships (Mameffe and Manning

2010). Let us consider the following computer science related English sentence to

demonstrate the output of Stanford Parser:

"Java is an object-oriented programming language."

The word level POS tags are represented as an output by:

Java/NNP is/VBZ an/DT object-oriented/J J programming/NN language/NN ./.

The POS tagset tree representation:

(ROOT

(S

(NP (NNP Java))

www.manaraa.com

Kumawat 28

(VP (VBZ is)

(NP (DT an) (JJ object-oriented) (NN programming) (NN language)))

(• •)))

The Type Dependencies are given by:

nsubj(language-6, Java-1)

cop(language-6, is-2)

det(language-6, an-3)

amod(language-6, object-oriented-4)

nn(language-6, programming-5)

The Stanford Parser provides edu.stanford.nlp package, and this project uses

various classes in this package to generate the output of the sentences as shown above.

The classes used by this application are as follows:

The edu.stanford.nlp.parser.lesparser.LexicalizedParser Class:

Table 3.2 Method Description of Class nlp.parser.lesparser.LexicalizedParser

apply(Object in) Converts a Sentence/List/String into a Tree.

If it cannot be parsed, it is made into a

trivial tree in which each word is attached

to a dummy tag ("X") and then to a start

nonterminal (also "X").

www.manaraa.com

Kumawat 29

The edu.stanford.nlp.trees.PennTreebankLanguagePack Class:

Table 3.3 Method Description of Class nlp.trees.PennTreebankLanguagePack

grammaticalStructureFactoryO This method returns a

GrammaticalStructure suitable for this

language/Treebank.

The edu.stanford.edu.tree.TreePrint Class:

Table 3.4 Method Description of Class edu.stanford.edu.tree.TreePrint

printTree(Tree t, PrintWriter pw) This method prints the sentence along with

POS Tagset, Syntactic Tagset and Tye

Dependencies.

Parsing of English sentences is performed by EnglishParser class. The

AsposePowerPointReader class, after getting the text, invokes the object of EnglishParser

class to parse English sentences and generate Semantic Parse Tree and the Type-

Dependency List for a particular sentence. The EnglishParser class invokes the object of

www.manaraa.com

Kumawat 30

ASLGrammar class to generate an ASL sentence with correct grammatical syntax. The

EnglishParser class provides the following interface.

Table 3.5 Method Description of Class EnglishParser

parse(String str)

generateSemanticParseTree(Scanner s)

buildTypeDependencyList(Scanner S)

This method takes English sentence as

input and returns ASL sentence as output.

This method read the sentence from an

input stream and creates a SemanticParse

Tree.

This method read the sentence from an

input stream and creates a Type-

Dependency List.

3.3.2 Semantic Parse Tree

Once the sentence is parsed by the Stanford Parser it provides us with POS tags

for each word and group of words. After the parsing, a data structure is required to store

the words and the POS tags corresponding to each word. The Semantic Parse Tree is an

Abstract Data Type (ADT) for representing POS tagset and Syntactic Tagset in the form

of the Generic Tree. The EnglishParser class generates a semantic parse tree by parsing

the output produced by the Stanford parser after parsing of the English sentence. The

www.manaraa.com

Kumawat 31

Semantic tree is used by ASLGrammar Class to generate ASL from the tree structure by

moving the tree branches and the nodes according to the ASL grammar rules. Each node

of the semantic parse tree consists of a vector that can store the child nodes for a

particular node. Each node consists of an index value. The index value is not unique but

is used to decide if the node is a POS tag or a word from the given sentence. The index

value of POS tags is -1 and for the leaf nodes the value is equal to the position number of

the word in the sentence. The leaf node Vector is of size one because it contains a single

word. The SemanticParseTree class generates ASL text after all the operations by

ASLGrammar class have been performed on the tree structure. After applying the

grammar rules, the tree structure is traversed and the leaf nodes are added to generate

ASL string. The following methods provide interface to manipulate the tree nodes:

Table 3.6 Method Description of Class SemanticParseTree

searchNode_Forward(String

nodeName, Node curNode, int

leaflndex)

searchNode_Reverse(String

nodeName, Node curNode, int

leaflndex)

insert!nTree(Node parentNode,

This helper method searches the given node

recursively starting from the leftmost child on the

basis of node name in the Tree and returns the pointer

to the node if it succeeds.

This helper method searches the given node

recursively starting from the rightmost child on the

basis of node name in the Tree and returns the pointer

to the node if it succeeds.

This private method is a helper method that connects

www.manaraa.com

Kumawat 32

Node newNode)

moveNodesInTree(String

source, int srcindex, String

dest, int desindex)

rearrangeChildNodes(Vector

list)

shiftNodesInTree(Vector list)

removeNodes(String

nodeName)

insertNonMannualMarker(String

nodeName,

NonMannualMarkers NMM)

generateASL(String _rule, int

_options)

generateStringTillNode(Node

searchNode, Node curr)

generateStringFromNode(Node

searchNode, Node curr)

the newly created node to its parent in the Semantic

Parser Tree.

This method helps to exchange the two subtrees in the

given tree, i.e., order of the tree. Used to change the

order of the given Sentence S+V+O to O+S+V.

This method helps to rearrange the nodes in the given

tree. It is used to move the adjectives before the noun

This method helps to shift the nodes in the given SPT,

used to put the adverbs before the main verb.

This method helps to prune the subtree or node if the

name matches. Used for removing the

Articles/Determiners, Auxiliary Verbs.

This method adds the Non-manual Markers to the

given Nodes.

This method is used to apply particular rotation to

Semantic Parse Tree as provided by the invoking

object and traverse tree to generate ASL sentence.

This method is used to generate string till a particular

node starting from the first leaf node.

This method is used to generate string starting from a

given node till the last leaf node of semantic parse tree

www.manaraa.com

Kumawat 33

3.3.3 Type Dependency List

The TypeDependency Class maintains a list in the form of a vector of objects of

the class Dependency. The Type-Dependency List is created by EnglishParser class after

the generation of Semantic Parse Tree. The Stanford Parser also produces the

grammatical relationship between words in the form of sentences as an output of parsing

of English sentences. Once output is produced, it is parsed to separate the words and the

relationship between them. The object of class dependency contains the information

regarding the grammatical relationship of words. Both words in a relation also contain an

index value generated by Stanford Parser as a position in the type dependency tree

structure. The Type-Dependency List is used by the ASLGrammar Class to determine the

relationship between words in order to apply particular ASL grammar rule. The class

TypeDependency consists of the following methods:

Table 3.7 Method Description of Class TypeDependency

addDependency(String

relationshipType,String Iword,String

IIword,int Iindex,int Ilindex)

getDependency(String type)

This function adds dependency to the

Vector used to maintain list. Each

dependency is added at the end of the list.

This function returns a list in form of a

Vector if any relationship in the list

matches the type provided as parameter to

the method

www.manaraa.com

Kumawat 34

Chapter 4

Conversion

This chapter discusses the strategy used to convert an English sentence into an

ASL sentence by applying proper grammatical rules of ASL. The chapter also provides a

glance over the non-manual markers and their application. Finally the creation of new

gestures for this application is discussed.

4.1 Required Tools

In this chapter, we discuss gesture creation for the new computer science

terminologies. This application uses a commercial gesture building tool, VCommunicator

Gesture Builder, provided by VCom3D (VCom3D 2006).

The Gesture Builder will allow users to create new gestures (or signs), including

gestures that can be spatially inflected at run-time. A key feature of this tool is the use of

Inverse Kinematics (IK) technology. This allows the user to focus on the hand position.

Once the user selects a hand shape and positions the hand, the IK software automatically

places the joints of the wrist, elbow, and shoulder in the correct position. This approach is

fast and easy, and puts the power of creativity completely into the hands of the users

(VCom3D 2006). This tool also supports the exporting the newly created gestures in

action format which can be added to the Signing Dictionary being used by the SignSmith

Studio (tool used for signing avatar animation which is discusses in next chapter).

www.manaraa.com

Kumawat 35

4.2 ASL Grammar

The ASLGrammar class plays a vital role of converting an English sentence into a

syntactically correct ASL sentence. The ASLGrammar class contains a reference to the

Semantic Parse Tree of the English sentence and also to the Type-Dependency List as

discussed in the previous chapter. It uses both data structures together to decide the

category of a sentence and to find the appropriate set of rules that will be applied to the

particular sentence. The ASLGrammar class stores various grammatical rules of ASL and

provides methods to apply these rules.

Table 4.1 Method Description of ASLGrammar Class

ASLGrammar(SemanticParseTree SPT,

TypeDependency _TD)

applyGrammarRules()

yesNoQuestionRule()

applyYesNoRule(int yesNo Value)

This function is the constructor of

ASLGramamr class and generates the

vector of rules.

This function decides the category of the

sentence and invokes appropriate methods

to apply different rules according to the

category of the sentence.

This method determines whether the

sentence is a yes/no question or not. This

function also determines if the question is

long question or short.

This method rotates SPT according to the

www.manaraa.com

Kumawat 36

applyTopicCommentRule()

isInfoQuestion()

isNegation()

yesNoValue generated by

yesNoQuestionRule() method.

This method rotates tree to put topic before

comment as discusses further in ASL rule

implementation section.

This method determines whether the

sentence is an information seeking

question.

This method determines if the sentence has

a negation relation in it.

4.3 Implementation of ASL Rules

a. Topic/Comment Rule

A sentence with topic and comment is generally combined with the use of a

conjunction. Once a conjunction is identified in a sentence, it is considered as

having a topic and a comment. The applyTopicCommentRule() method in

ASLGrammar class identifies the conjunction in the sentence by checking the

POS tag of nodes in the semantic parse tree. A parent node of conjunction in a

semantic parse tree must contain "IN" as the POS tag value. The generateASL()

method in then called to rotate the semantic parse tree around the conjunction.

After the rotation of tree, the topic precedes comment.

www.manaraa.com

Kumawat 37

b. Short yes/no Question Rule

The isYesNoQuestion() method in ASLGrammar class is used to find weather the

sentence belongs in a yes/no question category. isYesNoQuestion() method

consists of four word banks according to their POS tags (MD, VBP, VBZ and

VBD). If words such as 'can', 'could', 'is', 'are', 'do' etc. are the first words of a

sentence and ends with a question mark then it is a yes/no question. Upon

identification, this method returns the POS tag of the starting word which is then

removed from the semantic parse tree by applyYesNoRule() method. If the length

of the sentence is shorter than sixwords, it falls under short yes/no question

category.

c. Long yes/no Question Rule

After applying the isYesNoQuestion() method and removing the starting word

from the sentence, the length of the sentence is checked, and if it is greater than a

certain value, it is marked as a long sentence. The average length for a short

sentence is considered to be six. If the length of sentence is greater than six, the

topic/comment rule is applied to the sentence as discussed above.

d. Information Seeking Question

All information seeking questions start with wh-adverb. The isInfoQuestion()

method works similar to that of isYesNoQuestion() method. It consists of three

word banks according to their POS tags (WRB, WP and WDT). isInfoQuestion()

returns the POS tag of the word. The word with identified POS tag is then

www.manaraa.com

Kumawat 38

removed and if the length of the sentence is greater than six, the topic/comment

rule is applied, otherwise it remains the same. After applying topic comment rule

the removed word is then added at the end of the ASL sentence.

e. Negation Rule

This rule makes use of the Type-Dependency List to determine whether a

negation relation exists in a sentence. If there is a negative relationship present, in

the Type-Dependency List of the sentence then this method invokes the

negateTree() method on the Semantic Parse Tree and results in moving the

negation word at the end of the tree. The negation is determined by "neg" in the

Type-Dependency List.

f. Pronominalization

The pronominalization rule requires the signer to indicate pronouns by pointing to

either (a) a person or thing that it represents (b) or a place in the signing space that

is used as reference point. The SignSmith studio has inbuilt gestures for pronouns

and when a pronoun is encountered, the SignSmith studio uses the inbuilt gestures

for pointing. The SignSmith studio does not allow users to add custom pointing

gestures.

g. Tense with Time Adverb:

The class ASLGrammar consists of a time adverb bank which contains time

adverbs (Kelly and Kelly 2010). The applyTimeAdverb() method scans the

sentences for time adverbs. If a time adverb is found in the sentence it is moved

www.manaraa.com

Kumawat 39

and placed at the beginning of the sentence followed by a comma. For example, in

the sentence "I stayed home yesterday", the word yesterday is moved inside the

tree such that it becomes the first node and a comma is also added after it.

Article Elimination

Articles are identified by the POS tag "DT". For all sentences, the ASLGrammar

class applies removeNodes() method with "DT" as the parameter. It results in

removal of all the nodes with "DT" POS tag as their parent node.

Shifting Adjectives

The Type-dependency list for all the sentences is checked. If "amod" relation is

present in the type dependency list then the adjective is moved in front of the

corresponding word in the Type-dependency list. It is done by using

rearrangeChildNodes() method in SemanticParseTree class.

Conditional Sentences:

If the sentence is a declarative sentence then it is checked for having "if, and

"then" words in it. Once index of " i f and "then" are acquired, then the "then"

part is removed and is put at the beginning of the sentence. "Suppose" is added as

the leftmost child in the tree and a comma is inserted at the end of "then" part.

" i f and "then" are removed from the tree.

www.manaraa.com

Kumawat 40

4.4 Non-Manual Markers

The basic elements in a signing language are Handshape (or

Handform), Orientation (or Palm Orientation), Location (or Place of

Articulation), Movement, and Non-manual markers (or Facial Expression), summarised

in the acronym HOLME. Non-manual markers consist of the various facial expressions,

head tilting, shoulder raising, mouthing, and similar signals that we add to our hand signs

to create meaning. Non-manual markers are an essential part of communication using

ASL. The signs consisting of emotional expressions are usually signed with the help of

non-manual markers (Lifeprint 2010). Therefore, the sentence "I drove here and it was

pleasant" has a greater length in English as compared to "I drove here," but in ASL both

have the same length since the emotional expression is signed simultaneously with

signing of "I drove here." The class NonManualMarker consists of lists of Non-Manual

markers. The markers are added to the nodes of Semantic Parse Tree as per the

requirement of a sentence, which is decided by the grammatical rules implemented by the

ASLGrammar class.

4.5 Gesture Creation

For the completion of the tool, all signs related to the computer science field must

be present in the ASL dictionary. This application uses the Sign Smith ASL dictionary to

map gestures according to the words for the signs related to computer science that are not

necessarily present in the Sign Smith ASL dictionary. It is required to have a tool that can

create gestures for computer science terms and then merge those gestures with the ASL

www.manaraa.com

Kumawat41

Dictionary so that at the time of signing the words can be mapped from the same

dictionary.

Animation

Creator

(Gesture

Builder)

Figure 4.1: Addition of New Gestures to ASL Dictionary

4.5.1 Sources for Signing Gesture

For creation of signing gestures for computer science terminologies, it is required

to have authentic signing sources so that the sign created for new terms are not

ambiguous to the deaf and hard of hearing students. Students in the Deaf Education and

Deaf Studies Department performed a group discussion to agree upon newly created

computer science terminology signs and the signs were recorded. This project also makes

use of video tutorials provided by the Rochester Institute of Technology (National

Technical Institute for the Deaf) to generate computer science specific signs (Rochester

Institute of Technology 2011). Online signing repository such as Shodor Education

Foundation (T. S. Foundation 2005) and Signing Savvy (Signing Savvy 2003) were also

used to build a few signing gestures.

/ Gestures of
_J Computer Science

1 Courses Related
\ Words

ASL

Dictionary

www.manaraa.com

Kumawat 42

4.5.2 Gesture Creation Technique

This software uses the SignSmith Studio to generate the animation for the

translated text. The gestures created must be compatible to the SignSmith Studio

therefore, "VCommunicator Gesture Builder", a tool by VCom3D, is used to create

gestures for computer science related words (VCom3D 2006).

compile, compi
Figure 4.2: Conversion of Signs Using Gesture Builder

www.manaraa.com

Kumawat 43

Chapter 5

Presentation

This chapter basically focuses on creation of signing gesture for computer science

terminologies and generation of the signing avatar. This chapter also provides details of

graphical user implementation and automation of the process of signing animation

generation.

5.1 Related Tools and Libraries

5.1.1 Java Media Framework(JMF)

The Java Media Framework (JMF) (Oracle 2010) is a Java based library that

provides simple, unified architecture to synchronize and control audio, video, and other

time-based data within Java applications and applets. Further, this package can capture

playback, stream, and transcode multiple media formats. This project uses this library to

display the animation videos on the GUI of the software.

5.1.2 Autolt v3

The Autolt v3 (Aotult 2010) is a scripting language that is designed for

automating the Windows GUI and general scripting. It uses a combination of simulated

www.manaraa.com

Kumawat 44

keystrokes, mouse movement, and window/control manipulation in order to automate

tasks in a way not possible or reliable with other languages. It is a powerful language that

supports complex expressions, user functions, loops, etc.

5.1.3 VCom3D SignSmith Studio

SignSmith Studio (VCom3D 2006) is an authoring tool for creating multimedia

that incorporates sign language gestures. This tool uses the Signing Dictionary

(containing around 2000 gestures) to insert the gesture corresponding to a given English

word. The transition from one gesture to another (i.e., transition from one word to

another) is very smooth and makes this tool very effective for creating ASL signing

animation. In addition, the user can export the animation as video files that can be played

back without the need of the software.

5.2 Automated Signing Movie Creation

This application provides a user interface which displays the PowerPoint lecture

slides and the signing movie for each sentence in the slide. The process of English to

ASL conversion goes hand in hand with the signing movie creation by Sign Smith. With

the use of Autolt, a script is created which is compiled to generate a windows executable

file, and the JavaRunCommand Class invokes the executable at the end of the conversion

of a sentence. The JavaRunCommand provides the following method:

www.manaraa.com

Kumawat 45

Table 5.1: Method Description of JavaRunCommand Class

runSignSmith() This method executes the SignSmith

program from the specified location.

5.3 Output Generation

This section describes the process of the creation of the signing avatar performing

the gesture corresponding to the translated ASL and tools used to carry out this process.

5.3.1 Autolt v3 Script

This script is used to automate tasks on a windows system. Autolt Editor is used

to create a desired autolt script. Once a script is created it is compiled to generate an

executable file. The JavaRunCommand class is used to run the compiled executable file.

This executable performs the following tasks:

• Executes the SignSmith.exe from C:\Program Files (x86)\Vcom3D\Sign

Smith Studio 3.0.

• Opens the import file option, and uses the input file generated by the

application as an input file.

• Opens the export options and saves the animation as movie with ".avi"

extension.

file://C:/Program

www.manaraa.com

Kumawat 46

5.3.2 SignSmith Studio

SignSmith Studio works as the graphic engine for this application and is invoked

by the auto It script. SignSmith uses a text file as input and generates signing gestures

according to the text in the file. It can also create a movie for the generated animation.

5.3.3 Animation and PowerPoint Slides Display

This application uses the Java Media Framework and the commercial tool, Aspose

Slides, together to integrate the PowerPoint presentation and the animated movie into a

Java based GUI. The content of slides are displayed in JTextPane frame. The class and

the methods involved in the process of creating this GUI are listed below.

The MediaPlayer Class

This class uses the JMF Application Programming Interface (API) and provides

the interface to interact with the video from our Java Based Tool.

Table 5.2: Method Description of MediaPlayer Class

playMedia(String mediaFile)

reload(Player player, String title)

This method plays the videos from the

given Uniform Resources Locator (URL) into the

embedded internal frame by establishing a

connection to the data source.

This method reloads the new video into the

internal frame, i.e., establishes a new connection to

the data source.

www.manaraa.com

Kumawat 47

The AsposePowerPointReader class in the application uses this package to

interact with Microsoft PowerPoint slides. It reads the content from the slides in the

presentation and displays it in a JTextPane on a Java based GUI. This class also tries to

preserve the properties of the text in the presentation such as font size, font style etc. This

class provides following methods:

Table 5.3: Method Description of Class AsposePowerPointReader

nextSlide()

prevSlide()

moveDown()

moveUp()

This method loads the contents of the next Microsoft® Power

Point slide of in the JTextPane.

This method loads the contents of the previous Microsoft® Power

Point slide of in the JTextPane.

This method highlights the next sentence in the current slide in

JTextPane and starts playing the corresponding video.

This method highlights the previous sentence in the current slide

in JTextPane and starts playing the corresponding video.

Once the translation is done the presentation and the avatar is displayed in a JFrame as

shown in Figure 5.1.

www.manaraa.com

Kumawat 48

-American Sign Language Converter-

This is an introductory course for fundamental concepts of
programming in terms of JAVA.

Course Objectives

Figure 5.1: GUI to Display Slides and Signing Avatar

www.manaraa.com

Kumawat 49

Chapter 6

Results

The existing tools, SignSmith from VCom3D (VCom3D 2006) and TESSA from

ViSiCAST (ViSiCAST 2000), which are used for translation of English to ASL, perform

a word by word conversion of the sentences which could be grammatically incorrect

formation of sentence in ASL. Conversion of sentences via this application results in

application of correct grammar rules on the sentence. The output produced by the

application matches the sentence formation of the ASL (Stewart, Stewart and Little

2007), which has a correct syntax.

For example, the ASL translation of the English sentence, "Are you hiding

because he is here?" by the application results into the sentence "because he here, you

hiding?" hi the original sentence, we can see that the topic is "he is here" and the

comment is "are you hiding." In the translation process, the topic is placed in front of the

comment and the Be-verbs are eliminated. Since this is a yes/no question, "are" is also

eliminated from the sentence. Hence, the sentence correctly matches the syntax of ASL.

www.manaraa.com

Kumawat 50

Chapter 7

Conclusion and Future Work

7.1 Conclusion

The Deaf and Hard of Hearing students lose interest in taking computer science

courses because of the lack of an online repository that provides the signing gestures

related to computer science. Many of these students are born deaf and their first language

is ASL instead of English. All the teaching materials for computer science are prepared in

English rather than ASL and there is no tool that translates English to ASL with correct

usage of grammatical rules. Existing signing tools convert the English sentences word by

word which does not convey the meaning to deaf students correctly. This application

resolves these issues by introducing computer science related gestures and translation of

English to ASL with correct usage of grammar. This application makes the converted

ASL sentences more comprehensible to the deaf students. It takes input from the

Microsoft PowerPoint file which is the most popular lecture presentation tool. The

project provides a Graphical User Interface (GUI) which displays PowerPoint lectures

and the animation on the same screen. Hence, this application is of great significance for

Deaf and Hard of Hearing students.

7.2 Future Work

This project uses a third party tool, SignSmith Studio, for generating signing

gestures and animation which does not allow to create facial expressions that are

www.manaraa.com

Kumawat 51

considered very important in ASL. Non-manual markers are implemented in this project.

Hence, the creation of an animation toolkit would make the addition of facial expression

to the signing avatar easier. Addition of non-manual markers will help in better

translation of English to ASL sentences and express the information in a significant

manner.

The Autolt script automates the process of the translation and movie creation but

makes the system much slower. Creation of a new animation toolkit will also remove the

need of Autolt script since the animation can be created directly by using flexible

functionality of the toolkit. As a result, this application will not need to save movies of

animation and will be able to display the real-time animation for a sentence.

www.manaraa.com

Kumawat 52

References

Aotult. 2010. "Automating the Windows GUI." Accessed March 2010.

http://www.autoitscript.com/autoit3/index.shtml

Aspose. 2011. "Java PowerPoint Library to Read, Create and Mannipulate Presentations."

Accessed March 2010. http://www.aspose.com

Baker-Shenk, Charlotte, and Dennis Cokley. 2002. "American Sign Language Green

Books, A Teacher's Resource Text on Grammar and Culture. " Washington:

Gallaudet University Press.

eSign Project. 2004. "Essential Sign Language Information on Government Networks."

Accessed March 2010. http://www.sign-lang.uni-hamburg.de/eSIGN

Fourm, ASL-STEM. 2009. "Viewing toic: Computer Science." Accessed Feburary 2010.

http://aslstem.cs.washington.edu/topic/view/37

H|Anim. 2000 "Humanoid Animation Working Group." Accessed March 2010.

http://h-anim.org

IBM's Extreme Blue Projects. 2007. "MQ Telemetry Transprot, Say It Sign It." Accessed

Feburary 2010. http://mqtt.org/projects/sisi

Kelly, Charles, and Lawrence Kelly. 2010. "English Vocublary Wordlist. Adverbs of

Time." Accessed March 2011.

http://www.manythings.org/vocabulary/lists/a/words.php?f=adverbs_of_time

http://www.autoitscript.com/autoit3/index.shtml
http://www.aspose.com
http://www.sign-lang.uni-hamburg.de/eSIGN
http://aslstem.cs.washington.edu/topic/view/37
http://h-anim.org
http://mqtt.org/projects/sisi
http://www.manythings.org/vocabulary/lists/a/words.php?f=adverbs_of_time

www.manaraa.com

Kumawat 53

Lang, Harry G. 2002. "Research Priorities in New Millennium." Journal of Deaf Studies

and Deaf Education. 267-280.

Lifeprint. 2010. "American Sign Language Resource Site, Nonmanual Markers in ASL."

Accessed March 2011. http://www.lifeprint.com/asll01/pages-

layout/nonmanualmarkers.htm

Mameffe, Marie-Catherine de, and Christopher D Manning. 2010. "Stanford Typed

Dependencies." Accessed Feburary 2010.

http://nlp.stanford.edu/software/dependencies_manual.pdf

Marcus, Mitchell P., Marry Ann Marcinkiewicz, and Beatrice Santorini.1993. "Building a

Large Annotated Corpus of English." 313-330.

Marschark, M., and P.C. Hauser. 2008. "Deaf Cognition: Foundations and Outcomes

(Perspectives on Deafness)." New York: Oxford University Press.

Oracle. 2010. "Java Media Framework (JMF)." Accessed April 2010.

http: //www. oracle .com/technetwork/j ava/j avase/tech/index-j sp-14023 9 .html

Pettibone, Jeanette. 2002. "Perm Treebank Tags." Computational Linguistics Program.

Accessed Feburary 2011. http://bulba.sdsu.edu/jeanette/thesis/PennTags.html

Robbins, Curtis. 1996. "Computer Technology Education and the Deaf Student:

Observations of Serious Nuances of Communication." Accessed Feburary 2011.

http://people.rit.edu/easi/itd/itdv03n4/article3.htm

Rochester Institute of Technology. 2011. "Technical Signs for Science and Mathematics."

New York: National Technical Institute of Deaf.

http://www.lifeprint.com/asll01/pageslayout/nonmanualmarkers.htm
http://www.lifeprint.com/asll01/pageslayout/nonmanualmarkers.htm
http://nlp.stanford.edu/software/dependencies_manual.pdf
http://bulba.sdsu.edu/jeanette/thesis/PennTags.html
http://people.rit.edu/easi/itd/itdv03n4/article3.htm

www.manaraa.com

Kumawat 54

Sheryl, Cooper B. 1997. "The Academic Status of Sign Language Program in Instructions

of Heigher Education in United States." Coordinator of Deaf Studies/ Sign

Language. Accessed March 2011.

http://pages.towson.edu/scooper/dissertation.html

Signing Savvy. 2003. ASL Sign Language Video Dictionary. Accessed March 2011.

http://signingsawy.com/

Stewart, David Alan, Elizabeth Stewart, and Jessalyn Little. 2009. "American Sign

Language, the Easy Way." New York: Barron's Educational Series.

The Shodor Education Foundation. 2005 Deaf CS Home. Accessed Feburary 2010

http: //www. shodor. org/succeed-hi

The Stanford Natural Language Processing Group. 2006. "The Stanford Parser: A

Statistical Parser." Accessed March 2010. http://nlp.stanford.edu/software/lex-

parser.shtml

Valli, Clayton, and Ceil Lucas. 2002. "Linguistics of American Sign Language: An

Introduction." Washington: Gallaudet University.

VCom3D. 2006. "VCom3D Homepage." Accessed Feburary 2010.

http://www.vcom3d.com

ViSiCAST. 2010. "ViSiCAST Project." Accessed March 2010.

http://www.visicast.co.uk

Wikipedia. 2011. "American Sign Language." Accessed Feburary 2011.

http://en.wikipedia.org/American_Sign_Language

http://pages.towson.edu/scooper/dissertation.html
http://signingsawy.com/
http://nlp.stanford.edu/software/lexparser.shtml
http://nlp.stanford.edu/software/lexparser.shtml
http://www.vcom3d.com
http://www.visicast.co.uk
http://en.wikipedia.org/American_Sign_Language

www.manaraa.com

Kumawat 55

Appendix A

Penn Treebank POS Tags

This section provides a brief description of all the clause level and phrase level

POS tags used by the Stanford Parser and the Penn Treebank.

List of Phrase Level POS Tags

Tag

ADJP

ADVP

CONJP

FRAG

INTJ

LST

NAC

NP

NX

PP

PRN

Explanation

Adjective phrase

Adverb phrase

Conjunction phrase

Fragment

Interjection. Corresponds approximately to the part-of-speech tag UH.

List marker. Includes surrounding punctuation.

Not a Constituent; used to show the scope of certain prenominal

modifiers within an NP.

Noun phrase

Used within certain complex NPs to mark the head of the NP.

Corresponds very roughly to N-bar level but used quite differently.

Preposition phrase.

Parenthetical.

www.manaraa.com

Kumawat 56

PRT

QP

PvRC

UCP

VP

WHADJP

WHADVP

WHNP

WHPP

Particle. Category for words that should be tagged RP.

Quantifier Phrase (i.e. complex measure/amount phrase); used within

NP.

Reduced Relative Clause.

Unlike Coordinated Phrase.

Verb Phrase.

Wh-adjective Phrase. Adjectival phrase containing a wh-adverb, as

in how hot.

Wh-adverb Phrase. Introduces a clause with an NP gap. May be null

(containing the 0 complementizer) or lexical, containing a wh-adverb

such as how or why.

Wh-noun Phrase. Introduces a clause with an NP gap. May be null

(containing the 0 complementizer) or lexical, containing some wh-word,

e.g. who, which book, whose daughter, none of which, or how many

leopards.

Wh-prepositional Phrase. Prepositional phrase containing a wh-noun

phrase (such as of which or by whose authority) that either introduces a

PP gap or is contained by a WHNP.

List of Clause Level POS Tags

S Simple declarative clause, i.e. one that is not introduced by a (possible

www.manaraa.com

Kumawat 57

SBAR

SBARQ

SINV

SQ

empty) subordinating conjunction or a wh-word and that does not

exhibit subject-verb inversion.

Clause introduced by a (possibly empty) subordinating conjunction.

Direct question introduced by a w/z-word or a w/z-phrase. Indirect

questions and relative clauses should be bracketed as SBAR, not

SBARQ.

Inverted declarative sentence, i.e. one in which the subject follows the

tensed verb or modal.

Inverted yes/no question, or main clause of a w/z-question, following

the w/z-phrase in SBARQ.

www.manaraa.com

Kumawat 58

Appendix B

List of Translated Words

Programming

Software

Class

Compilation

Execution

OOP

method (Java)

void

webpage

functional

identifier

abstract

assert

Boolean

break

byte

architecture neutral

UML

String

case

catch

char

const

continue

default

double

enum

extends

finally

final

float

import

goto

continue

default

jdk

testing

print

public

protected

Private

package

long

interface

int

import

goto

float

finally

final

implements

extends

enum

double

syntax rules

object

println

machine code

Interpreter

bytecode

compiler

CPU

volatile

Try

transient

this

throws

Switch

synchronized

Super

static

return

short

semantics

inheritance

escape sequence

www.manaraa.com

Kumawat 59

variable

ascii

postfix

instantiation

concat

NumberFormat

flow of control

indentation

palindrome

main

GUI

Aggregation

body

Modifier

Instance Data

Components

primitive data type

expression

prefix

reference

toUpperCase

DecimalFormat

AND

block statements

iterator

toString

events

overloading

parameter

Accessor

UML Diagram

character set

operator precedance

casting

assignment

replace

ordinal

NOT

lexicographic

ordering

URL

constructor

container

Initializer List

Driver program

Mutator

encapsulation

Unicode

expression tree

scanner

alias

Random

wrapper class

OR

while

for

scope

Listener

Command Line

argument

Dependancy

Header

black box

www.manaraa.com

Appendix C

Autolt Script

#Script to automatically create animated movie from VCom3D#

WinActivate("[CLASS:com.vcom3d.sss.u]")

;WinSetState("[CLASS:com.vcom3d.sss.u]", "", @SW_SHOW)

ControlSend("[CLASS:com.vcom3d.sss.u]","","","Ai");

WinSetState("Save?","", @SW_HIDE)

ControlSend("Save?","","","!n");

WinWaitActive("[CLASS:#32770]")

ControlSetText("[CLASS:#32770]", "", "[CLASS:Edit; INSTANCE: 1]", "

C:\Users\Prashant\Documents\Spring ll\Thesis\Project\input.dat")

ControlClick("[CLASS:#32770]", "", "[CLASSNN:Button2]")

sleep(8000)

;WinActivate("[CLASS:com.vcom3d.sss.u]")

ControlSend("[CLASS:com.vcom3d.sss.u]","","","!r);

ControlSend("[CLASS:com.vcom3d.sss.u]","","","e");

file://C:/Users/Prashant/Documents/Spring
file://ll/Thesis/Project/input.dat

www.manaraa.com

Kumawat61

ControlSend("[CLASS:com.vcom3d.sss.u]","","","m");

WinWaitActive("[CLASS:#32770]")

ControlSetText("[CLASS:#32770]'\"", "[CLASS:Edit; INSTANCE: 1]","

C :\Users\Prashant\Documents\Spring 11 \Thesis\Proj ect\output. avi")

ControlFocus("[CLASS:#32770]", "", "[CLASS:Edit; INSTANCE: 1]")

ControlSend(,,[CLASS:#32770]","","","{TAB}");

ControlClick("[CLASS:#32770]", "", "[CLASS:Button; INSTANCE:1]")

WinActivate("[CLASS:SunAwtDialog]")

WinWaitNotActive("[CLASS:SunAwtDialog]")

sleep(10000)

;WinClose("[CLASS:com.vcom3d.sss.u]")

;WinSetState("Save?", "", @SW_HIDE)

;ControlSend("Save?","","","!n");

file:///Thesis/Proj

